Statistics 1 Numerical Measures Questions

3 When an alarm is raised at a market town's fire station, the fire engine cannot leave until at least five fire-fighters arrive at the station. The call-out time, X minutes, is the time between an alarm being raised and the fire engine leaving the station.

The value of X was recorded on a random sample of 50 occasions. The results are summarised below, where \bar{x} denotes the sample mean.

$$\sum x = 286.5 \qquad \sum (x - \overline{x})^2 = 45.16$$

- (a) Find values for the mean and standard deviation of this sample of 50 call-out times.

 (2 marks)
- (b) Hence construct a 99% confidence interval for the mean call-out time. (4 marks)
- (c) The fire and rescue service claims that the station's mean call-out time is less than 5 minutes, whereas a parish councillor suggests that it is more than $6\frac{1}{2}$ minutes.

Comment on each of these claims.	(2 marks)
----------------------------------	-----------

4 The time, x seconds, spent by each of a random sample of 100 customers at an automatic teller machine (ATM) is recorded. The times are summarised in the table.

Time (seconds)	Number of customers
20 < x ≤ 30	2
$30 < x \leqslant 40$	7
$40 < x \leqslant 60$	18
$60 < x \leqslant 80$	27
$80 < x \le 100$	23
$100 < x \leqslant 120$	13
$120 < x \le 150$	7
$150 < x \le 180$	3
Total	100

(a) Calculate estimates for the mean and standard deviation of the time spent at the ATM by a customer. (4 marks)

(b)	Kirk attends darts coaching sessions for three months. He then claims that he has a probability of 0.4 of winning any game, and that the outcome of each game is independent of the outcome of every other game.															
(i) Assuming this claim to be true, calculate the mean and standard deviation for number of games won by Kirk in a match of 15 games. (3 me											on for the (3 marks)					
	(ii) To assess Kirk's claim, Les keeps a record of the number of games won by Kirl in a series of 10 matches, each of 15 games, with the following results:										•					
			8	5	6	3	9		12	4		2	6	5		
		Ca	alculate	the m	ean a	nd st	anda	rd de	eviat	ion o	of the	ese v	alues.			(2 marks)
	(iii)	Н	ence co	mment	on t	he va	ılidit	y of	Kirk	's cla	aim.					(3 marks)
1 7	Γhe t	imes	, in sec	onds, ta 17 41	19	22 43	26	28	31	34	36	38	39	al puz	zle were	
	(a)	Calc	culate th													(3 marks)
	(b)		act, 23 j				puzz	le. I	Howe	ver,	3 of	them	faile	d to so	olve it w	ithin the
		Calc	ulate th	ne medi	an an	d the	inte	rquar	tile r	ange	of t	he tir	nes ta	ken b	y all 23	people. (4 marks)
	(c)	For	the tim	es takeı	n by a	all 23	peop	ole, e	expla	in wł	ıy:					
		(i)	the m	ode is	not ar	app	ropri	ate n	umei	rical	meas	sure;				
		(ii)	the ra	nge is	not ar	app	ropri	ate n	umei	rical 1	meas	sure.				(2 marks)
																_

4 A library allows each member to have up to 15 books on loan at any one time.

The table shows the numbers of books currently on loan to a random sample of 95 members of the library.

Number of books on loan	0	1	2	3	4	5–9	10-14	15
Number of members	4	13	24	17	15	11	5	6

- (a) For these data:
 - (i) state values for the mode and range; (2 marks)
 - (ii) determine values for the median and interquartile range; (4 marks)
 - (iii) calculate estimates of the mean and standard deviation. (4 marks)
- (b) Making reference to your answers to part (a), give a reason for preferring:
 - (i) the median and interquartile range to the mean and standard deviation for summarising the given data; (1 mark)
 - (ii) the mean and standard deviation to the mode and range for summarising the given data. (1 mark)

Statistics 1 Numerical Measures Answers

3(a)	$Mean = \frac{286.5}{50} = 5.73$	B1		CAO
	Standard deviation = $\sqrt{\frac{45.16}{49 \text{ or } 50}}$ =			
	0.95 to 0.961	B1	2	AWFW
(b)	99% $\Rightarrow z = 2.57 \text{ to } 2.58$	B1		AWFW 2.5758
	CI for μ is $\overline{x} \pm z \times \frac{(\sigma \text{ or } s)}{\sqrt{n}}$	M1		Use of Must have $(\div \sqrt{n})$ with $n \ge 1$
	Thus $5.73 \pm 2.5758 \times \frac{(0.95 \text{ to } 0.961)}{\sqrt{50}}$	A1√		$$ on z and $s^2 > 0$ but not on \overline{x} Accept only 50 or 49 for n
	$5.73 \pm (0.34 \text{ to } 0.36)$	1		Dependent
	5.37 to 5.39, 6.07 to 6.09)	A1	4	AWFW
(c)	CI excludes both values of 5 and 6½ so Neither claim appears valid	B1√ ↑ B1√		√ on (b); OE Dependent √ on (b); OE
	or			
	CI excludes 5 so claim not valid and	(B1√)		√ on (b); OE
	CI excludes 6½ so claim not valid	(B1√)	2	√on (b); OE
	Total		8	

4(a)
$$z fx = 8025$$

 $z fx^2 = 739975$
Mean $(\overline{x}) = 80.2$ to 80.3 B2 AWFW 80.25
Standard Deviation $(s_n, s_{n-1}) = 30.9$ to 31.2 B2 AWFW 30.97882 or 31.13489 MPs (x) : 25, 35, 50, 70, 90, 110, 135, 165 (B1) At least 4 correct

Mean $(\overline{x}) = \frac{z fx}{100}$ (M1) 4 Use of

(b)(i)	Mean, $\mu = np = 15 \times 0.4 = 6$	B1		CAO
	Variance, $\sigma^2 = np(1-p) = 6 \times 0.6 = 3.6$	M1		use of $\sigma^2 = np(1-p)$
	Standard deviation = $\sqrt{3.6}$ = 1.89 to 1.9	A1	3	AWFW; or equivalent
(ii)	Mean, $\overline{x} = 6$	B1		CAO ($\Sigma x = 60$) CSO if evidence of $np(1-p)$ or 1.9
	Standard deviation, s or $\sigma = 2.82$ to 2.99	B1	2	AWFW; or equivalent. $(\Sigma x^2 = 440)$
(iii)	Means are same/equal	B1√		$$ on 2 means; accept $\frac{6}{15}$ = 0.4 if not contradicted by \overline{x} in (ii)
	Standard deviations are different	B1 dep		dependent on 2 correct SDs
	Reason to doubt validity of Kirk's claim	B1 dep	3	dependent on 2 correct SDs
				·
1(a)	Mean $(\bar{x}) = 39.3 \text{ to } 39.4$	B1		AWFW (39.35)
	Standard Deviation (s_n, s_{n-1}) = 12.3 to 12.7	B2	3	AWFW (12.358 or 12.679)
	If neither correct but working shown, then			$\sum x = 787 \sum x^2 = 34023$
	$Mean\left(\overline{x}\right) = \frac{\sum x}{20}$	(M1)		Used
(b)	Median = 42	B 2		CAO
	Median = 41.5 or 39 or 40	(B1)		CAO
	Interquartile Range = $55 - 31 = 24$	B2	4	CAO; allow B1 for identification of 31 and 55; B0 if method shown is incorrect
	Interquartile Range = 21 to 27	(B1)		AWFW
(c)(i)	Mode: eg Does not exist If exists, must be > 60 or 58	B1		OE
	All / too many different values Sparse data	ы		OL
(ii)	Range: eg			
	Maximum value is unknown / > 60 or 58	B1 Total	2 9	OE; accept 'slowest' but not 'smallest'
l l		Lotai	_	

4(a)(i)	Mode = 2	B1		CAO
	Range = 15	B1	2	CAO
(ii)	CF: 4 17 41 58 73 84 89 95 x: 0 1 2 3 4 9 14 15			
	$Median (48^{th}) = 3$	В2		CAO; B0 if shown method is incorrect
	Interquartile Range $(72^{\text{nd}} - 24^{\text{th}})$ = 4 - 2 = 2	B2		CAO Allow B1 for identification of 4 and 2 B0 if shown method is incorrect
	If neither correct but CF attempted and matched correctly with ≥ 5 x-values	(M1) (A1)	4	Allow for median = $2 + \frac{x}{17}$
(iii)	$Mean(\overline{x}) = 4.2$	B2		CAO $\sum fx = 399$
	Standard Deviation (s_n, s_{n-1}) = 3.88 to 3.91	B2		$\sum fx^2 = 3111$ AWFW (3.887 or 3.907)
	If neither correct but mid-points of 7 and 12 seen	(B1)		
	and use of mean $(\overline{x}) = \frac{\sum fx}{95}$	(M1)	4	Allow for $4.1 \le \overline{x} \le 4.3$
(b)(i)	Unknown values (16) have no effect on median and IQR or median and IQR are exact values but \overline{x} and s are estimates	В1	1	
(ii)	Use all available data or Enable further analyses	B1	1	
	Total		12	